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Quasi-linear theory has been applied [1-3] to nonlinear effects in
the interaction of a beam of charged particles with a plasma, as
has allowance for nonlinear scattering of Langmuir waves [4,5].

When a low-density beam passes through 2 plasma, the effects of
the nonlinear interaction usually appear at times substantially greater
than the time of quasi-linear reaction, and their results amount to
transformation of the spectrum arising in the quasi~linear stage.

Here I show that there are also cases in which the effects from inter~
action can be reduced becanse of breakup of Langmuir waves to
Langmuir and sound waves (1 = ' + s5) [6, 7). The physical reason

for loss of interaction effectiveness is that substantial nonlinear effects
cause transfer of the oscillation energy to a nonresonant part of the
spectrum, where the oscillations do not interact with the beam, If
the plasma is not isothermal (T > T;), the breakup I = ' +s
predominates over other nonlinear processes in the range of param-
eters envisaged.,

If the electron beam is injected into a semi-infinite plasma at x =
=0, quasi-linear theory indicates that the beam-plasma system gives
rise to a distribution with a plateat in the electron distribution func-
tion for x = = . Let us consider a range of plasma parameters for
which the quasi-linear steady level of the Langmuir waves is not at-
tained, because of 7 = 1" + s breakup, and no plateau is produced.
Here, as previously [1-5], the treatment is one~dimensional.

We assume that the oscillations excited by the beam are propagated
in the beam direction perpendicular to the boundary of the plasma
(x = 0). The following model is used for the distribution function of
the beam incident on the boundary of the plasma: 38f/8v > 0 for a
fairly narrow velocity range vy~ 1< v< vo+ u{u < vy withv >
> 0, while f is discontinuous at the boundaries of this range, with
af [ ov ]u=u,,—l_-u. - — oo and ve <€ v,

If the sound waves formed from the Langmuir waves recede to infinity
(or are absorbed at the wall at x = L), there is a single quasi-stationary
state, On the other hand, the sound waves in a plasma of length L
may be refiected from the walls if the absorption is low, and then
there are two possible quasi-stationary states, In the latter case, the
sound waves after double reflection are propagated in the positive
direction at x = 0 beginning at some instant t'. Sound waves in this
flux lie in the resonance range with respect to breakup, so the gen-
eration of Langmuir waves by the beam will be disrupted, as will

the first quasi-stationary state, since the induced breakup will at
once (at x = 0) predominate over the generation, The resulting (sec-
ond) quasi-stationary state has a high level of ion-sound waves NS

and a nearly zero level in the number of Langmuir waves NIZ ~ Ny o,

This second state will be further disrupted, since scattering at the
ions will cause the ion-sound spectrum N(kg) to be displaced from
the resonant range Akg. The time spent in the second quasi-station-
ary state will then be determined by the time taken to displace N(kg)
by Ok,

§1, Langmuir waves can [6] break up into Langmuir
and ion~sound waves only if k; = wy/vy > ky, i.e., when

velve > s Vmom; 1.1

in which v is the mean speed of the electrons in the
beam, kj = (me/mi)i/z/:%}\e,

we® = (4""‘62”0/"7'3)!/’1 Uy = (Te/me)‘/" Ay = vofa,..

The possible number of Langmuir satellites is n if
ky = wy/vy lies in the range

2n—1(£¢_>‘/2<k1<%”_"_'_'_1(.m_e)’/2, n=123...,

37“& m; 3}\,9 m;
i.e.,
2n—1/m\'e . v, 2n 41 _m_e_‘)'/a 1.9
3 (E') < vy < 3 (mi : ( )

In particular, there can be only one satellite in a
hydrogen plasma for 1/120 < ve/v, < 3/120, two for
3/120 < vg/vy < 5/120, etc., and six for 11/120 <
< ve/vy < 13/120. The model for the distribution func-
tion of the plasma + beam system becomes unsuitable
for a hydrogen plasma for the larger number of satel-
lites corresponding to vg/v, > 1/10, The theory of
one-dimensional decomposition [6] indicates that it is
reasonable to consider a spectrum of nonoverlapping
satellites only for Ak < 4k, i.e., for
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The complete system of equations for this problem
takes the form [3, 6]
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ko = (moJmi)" /30,

Bp = Bl =+ Bat = .‘/1]? ksnvemefm; .

k1 = wo/vg,

Fp=(—1)"[2ko(n —1)—Fk] for n=2,3,4...,

ko =kp=kpny for n=1,2,3. Ae = VefW ,

V! = 3v Ak, o2 = 4neng/m, . (1.4)

First we consider what parameters of plasma and
beam make breakup processes important.

In the case of the pure time problem (8(...)/8x =
=0}, neglect of breakup means that the stationary
level of the longitudinal waves Np®=Ny|ljeo =
= wmenivg/wg corresponding to the maximum energy
nmevyu of the Langmuir waves is attained after a
time

o= (12 35 (1.5)

>"1 1 g u?
=0 T O

while for the breakup increment corresponding to the
stationary level of the longitudinal waves we have

i loo X ny kevo?
—~ N = 2L
Yiis I 8 e v "

(1.6)

It is thus clear that breakup must be considered if
alNj° 2= 1/1, 1. e., for

_“_32(_21“_)‘/2, (1.7

From (1.7), with the condition for the applicability
of concepts on the number of waves,

max{aN5, 1/t << AQ =

3,2
o Ak, (1.8)

we have a restriction on the beam density

n 48 14 4
2 o2 [ De 1.9
no n (?70 ) ’ ( )
which gives ny/ng < 1072 for a hydrogen plasma.

In the case of the spatial quasi-stationary problem
(8(...)/8t = 0), when a beam acts on a plasma half-
space from the left, there is continuous renewal of the

distribution function of the beam at each point. As a
result, if breakup is neglected, the rise in the number
of waves at any point is restricted only by the reces-
sion in the positive direction, and the stationary level
in this case is

oo 1 mnwe® 2 [ vp \3
NF =N pa— Pantly (4 B0 It
II i ]x_oo ©o? 3 7,

(1.10)

The level NS* (for Nzi* ) for equality of the incre-
ments of linear generation and breakup is

Ns‘___ mnives lmkl ve
W2 ko ur

(v =y, (1D

so it is necessary to consider breakup for N**
i.e., for

& Npp=,

u? Boo 2.
7;?> kqvy vo?
Inequalities (1.3) and (1.12) are obeyed simulta-
neously only if
Vo > Ve l‘ 81/2 (mi/me)s/m- (1.12)
We therefore have the following system of inequali-
ties derived from (1, 1), (1.3), and (1.12) for the range
of parameters within which it is necessary to con-
sider breakup in the spatial quasi-stationary problem
and where this can be done on the basis of the theory
of nonoverlapping satellite bands [6]:

o1/ BIJ2 (mifme)™ < vy < 30, (mifm) " (1.13)

(for a hydrogen plasma 9ve < vy < 120 vg),

Y2 p 3 2 4wyt
18 (72 ) s < <73 a -

9 28 m;

The condition on n,/n; is formally muchmore rigid
for the spatial problem because N%I exceeds N% by
a factor of (v,/ve)?, and so the maximum increment
of the decay I — I' + s is also larger by a factor of
(Vo/Ve)z. In fact, the level Ny, corresponding to
quasi-linear relaxation is not reached in the spatial
problem, and so (1.13) is replaced simply by 1/7) <
< AQ (since aNprf™® < 1Y)

ny [ e <L 2 (/ve)® (Ve/vo)® < (wo/ve) (me/m)s | (1.14)

The breakup processes predominate over the other parallel non-
linear processes for the above range of plasma parameters, The gen-
eration increment for ion-sound waves of frequency wyj for 1 s
scattering is [5]

S_( x A\ g ; wp? 2uw,
Nis = §_> rm v 2 Ny EXRETN

Comparison of 7%5 with 7%13 ~ ocNi (the increment for generation
of ion-sound waves in breakup) shows that breakup processes predomi-
ate for

1/,

() en(F)
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However, yyzs (the breakup increment for longitudinal waves, is

proportional to N°_, while the increment for I => s scattering is yz ™
~ SNsdk, so for

z~(£_”2i_‘iﬂ__,vsi£’£‘£
Tis =72 1‘32 e !

it is necessary to have the following condition for breakup to predomi-
nate:

Nsi 9\

- - 1.

'Tllls N ¢ ( n ) <
This condition is readily shown from (1,3) and (1.7) to be always

satisfied with a margin of at least an order of magnitude,
Companson of the increment for L = ¢ shift at ions for To > T;

with Vlls (breakup increment) gives us a condition for predominance

of breakup:

v2 1 Ti\2 3 f m \ u
el = (w) < @

which is always obeyed when (1.7) is obeyed.
Note that 7 —> I scattering at electrons is less strong than that at
ions.

Growth of breakup does not necessarily have to
occur in a unique fashion, because the onset is sub-
stantially dependent on suitable centers. For instance,
let a sound center arise at x; at time t; when the sta-
tionary quasi-linear plcture has been attained at a
sufficiently high level N1 [3]. Then breakup starts
near xy and expands in both directions from that point
with the group velocities v¢ (ion sound) and V{ (Lang-
muir satellites). Then N1 in the range (0,%() is re-
duced in a time ~x,/| V5|, and correspondingly the
beam for this time in the region x > x, + x| VL/VE |
proceeds with an almost unchanged distribution func-
tion. Thus N{{ in that region can exceed even the
quasi-linear stationary level for some time. However,
subsequent growth of the breakup gradually leads to
establishment of the quasi-stationary state.

§2. Consider the solution to (1.4) in the quasi-
stationary case (8(...)/8t = 0).

As Nzl has a maximum on account of nonlinear in-
teraction of the beam with the plasma, there is a
time t* such that NZZ <« N8 (NS only increases, be-
cause the sound spectrum in this approximation is
not subject to breakup, and the phase velocity of the
sound waves is less than the phase velocity of the Lang-
muir waves involved).

Then, if the plasma and beam parameters allow
there to be two or more satellites, we can always
neglect N2l in the equations for f, Ny, and NS, The
chain of equations for all possible satellites then auto-
matically terminates, and we get for the quasi-sta-
tionary state that

1 9f

3 [/
vy =Ty N g

N, ;]
Vi 6:: ———'Tlelgfj—“NllN’:

aN® .
Dy g =g NiN*. (2.1)

Eliminating N® from (2.1), on the assumption that
NS (0,t) = N5, we get for the general case that

S Nyidz)| =

d rvi ol
A

Ta + N° exp (

(2.2)

In this paper we consider only the case inwhich [ —
~ ['+ s breakup destroys the quasi-linear relaxation
(with its plateau on the distribution function), so the
influence of the waves on the distribution function is
small and the generation increment may be considered
as constant:

Solution of the last two equations in (2. 1) amounts
to the guadrature

b _ (DoakovoNgs (l)us
2bmgnov,t 7

However, it is more convenient to reduce these
equations to

din N —a—b B !
a exp (f{? Nl,dz) .

dz

2.4

This shows that Ni'= N,k exp (az), initially for x <
<¢, in which ¢ is defined by

a=bexp (7 Sch‘dz) .
0

The value Ngmax at x = ¢ is followed for x > c by a
fairly rapid fall. We can estimate ¢ from

[
a =bexp ['r S N exp (azx) dx] No= Ny,
)

which with a/No'y > 1, In (a/b) > 1 gives

c=1l [;;V—, In (a/b)] = LIV N (2.5)

Then

Nl max _ Nlo exp (ac)

—z[a
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dnngmevov,?
ko(l)oN u“u’

(2.6)

__ 8anymwed [ v \2
(902 1}

The condition, for this case to oceur, is Ni max Nn“, where
the linear increment may be considered as constant, i.e.,

u v . a 4nnym v v 2
—>=22In(a /b)), = -————r 2.7
vg = 7, (1210 /o) b ko, N "u? .7

Violation of (2.7) corresponds to the case in which nonlinear pro-
cesses follow the quasi~linear ones. As we are interested in nonlinear
suppression of the quasi-linear relaxation, we will not consider the
case in which (2.,7) is not obeyed. Condition (2.7), taken with (1.12)
and (1,15), sets a lower bound to u/ve; also, (2.7) is compatible
with (1.8} only when

v, 1 m, s i s
L <[ 3 (”h) V3In(a/b)] ’

which implies that v, = 10v, for a hydrogen plasma, Then (1.13)
is replaced by the following conditions for the range of application of
(2. 3), subject to (2,7) and (2.8):

m, !/l v ’/z
Y L
max{}/m(me) (”0 ) s

(2.8)

—Zf(azm%) }< < Z“: (%‘:)%, (2.9)
max{(3)" (22)"
[3 (3111 -Z—)/ (%)‘/Z]%}< <3 ( = )l/z. (2.10)

Further, the condition is as follows for the application of the con-
cept of the number of quanta 27/k; = A < ¢:

nl 1 ye a4 % 2
T <% (;;) (7) In (V1B Ny (2.0
and so (2.11} is obeyed when (1.14) is obeyed,
The time to attain the spatially stationary picture is
¢ 1 ! !
=7, c=Tln(N; max ) N¢) {2.12)

s

1/2

in which vy = (Te/mj)’? is the speed of sound in the plasma.
§3. I in some way it is possible to produce a strong
sound-wave flux

(N >N =g [ o)

in the region of resonant wave numbers at x = 0 in the
positive direction, this quasi-stationary state will be
suppressed, as willany generation of longitudinal waves
by the beam, and we get a quasi-stationary state with
N{ = Nf. One of the cases inwhichsuch suppressmn
canoccur is abounded plasma of size 1. > a 1ln(Nln“‘a‘“X/
/'Ng) with mirror walls; then (2.12) gives the time
taken to produce the first quasi-stationary state, which
is suppressed by the sound waves after a time on the
order of

T, = 2LJv, . (3.1)

If the linear attenuation of the sound is negligible,
the second quasi-stationary state can be suppressed,
for example, by nonlinear displacement (at ions) of
the sound waves toward smaller wave numbers by
Akg = 2Ak,, in which Ak, = 2uw,/vE, after which the
first quasi-stationary state recurs. These two states
then continue to alternate. The level N®™M3X  which is
attained for x > ¢, in the first quasi-stationary state
is several times larger than
v o= S )

We can estimate [8] the rate of displacement of the
ion-sound spectrum in k-space:

8% AoT g2

Lor o _Fofa¥s Tiﬁg%oi
[\ 8a13npe?

2 A
22T g2ng

KNG, Ay —

= (2207 { NV* ) 0,04tk s, (3.2)

The following is the time for displacement of the
sound-wave spectrum by Akg, and hence, the time
for disruption of the first stationary state:

__ AklynemT,
5t T 2TikSWS

_ kikominoulan
2k AT n1w%

vy Al / (3.93)

The following are the conditions that cause alter-
nate termination of the first and second quasi-station-
ary states:

B, < Ajvs <€ v2L < vaf2 In (Nimax/N 1y {3.4)
in which 84 is the linear damping for the sound.

An analogous picture may also occur if the second
quasi-stationary state is suppressed by linear damp-

ing (or absorption at the boundaries x = 0, L) for the
sound waves, when N8 < NS* for x = 0:

175 < By << v5/2L < vyaf2ln (N1 ™% | Ng) (3.5

If B8y = 301 = (7r/2)‘/2 ksVeme/mi (Landau damping)
for a given noise level, we may get smoothing of the
part of the electron distribution responsible for linear
absorption, and then the energy NSwSAkS(Zvr)‘1 be-
comes comparable with mvyAvf€Avng, and 84 be-
comes zero. The following is the level N° at which
a plateau appears in the electron distribution and
Bg -0

s Y mekesu 7, \3
IVp = 4 Vzﬂ menove“ W(—v;) .

There is no linear damping at this N® and above.

In our case the ratio

{3, 6)

N YR m (2 )“ (_@_fﬁ>1.

W7 2w me k\we) \u ] K
Then it is necessary to assume that 8, = 84 + Bst
in which Bgt is due to collisions.
Calculation of the initial (thermal) levels [9] gives

1 Mg s MgWe? .
No = 577> Ny = 36nv°k,
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As an example, consider a hydrogen plasma with ny/n, = 10~%,
ng=8 - 10%cm™?, k, = 10 k, (five satellites) and

kg =2 (ky — k) =18 ko, @y= 1010 sec-1,
ve = 108cm/sec, wvy=2, To/Ty= 10,
In(a/t) = 14, a = 2.9cm-1, In (N D%/NH = 17.5,

¢ == 6.0cm, A, = 2xn/k, = 0.8cm.,

In that case, the time for formation of the first quasi-stationary
state is 7y = 2.6 usec, the time for suppression of this state (with L =
=10 cm) is 7, = 8.8 psec, and the time of existence of the second
quasi-stationary state is not more than 74 = 500 psec,

§4, When linear damping of the sound waves due to collisions
is incorporated, B; = By and N} « NS, i.e., when n > 1, the
initial system has, for 8f/0v = constant, solutions with closed phase
loci similar to those shown in the figure. The process corresponding
to the lower part of the curve is very slow, We have the following for
the spatial problem:

1
N 3
Vil T = i g —aiN",
aN'  «
v, = 5 NN — BN, (4.1)

Then
vl on! N°  N* N

28,
s _ 200 « 120
M= N = (4.2)
The integral of

N — N maX T In (V! Ny Ry =

—_ 2ko 5% s 5 ] s

=7 [N*In(N"/N®*)— (N — N°*)] (4.3)

for N® = N%* defines the two values
Nll (1) — Nll+ _ Nll max
Nll (2)— N1l+e_l/c — le—, ¢ = Nllt/NlH- .

For Nll = Nll *, the integral of (4.8) defines similarly the two
values

y1 = Ns—/Ns‘, y2 = Ns+/Ns.
which are solutions to
By NG
Iny—{—i——yzm TV?‘—(C—i—cl-nc)' (4.4)

The upper part of the graph corresponds to thetime 73 = ¢/ vs (§2),
while the increment for the lower partisy ~ clel/ 2 — By (with
By > (af2) Ni) and in any case is not greater than B8;, and so the
attenuation length is not less than Ly = v¢/B; (correspondingly, 7=
= Lg/vs= 1/8;). The above periodicity can occur for a plasma with
a size L > Ly, while the stationary pattern of § 2 will occur in a
semi-infinite plasma.

I am indebted to V. N, Tsytovich, who proposed the
basic idea for this paper, for much valuable advice.
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